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Calculation of Bubble and Dew Points of Ideal
Multicomponent Mixtures by Using Statistical Methods.
Part I. The Paraffinic Series

A. S. SAID, M. S. HIMMO, and G. S. ALY

DEPARTMENT OF CHEMICAL ENGINEERING
UNIVERSITY OF KUWAIT
KUWAIT

Abstract

Statistical moments are utilized to develop a noniterative method for the
calculation of the bubble and dew points of ideal multicomponent mixtures. This
approach eliminates the need for Antoine’s constants and only requires the mole
fraction of each component in the mixture and the normal boiling points. Three
homologous series (normal paraffins, olefins, and selected members of the
alkylbenzene series) were investigated, and the bubble and dew points calculated
by using the statistical method proved to be quite accurate. In Part I of this series
the basic equations used to develop this approach are discussed in detail. The
computed bubble and dew points are presented for the normal paraffinic series
and compared with those obtained from the conventional trial-and-error method.
The average temperature difference for bubble point ranges between 0.012 and
0.192°C, giving an average relative error range of 0.008-0.091%. The corresponding
ranges for dew point calculations are 0.013-0.672°C and 0.009-0.255%, respec-
tively. The statistical approach can save up to 60% of computer CPU time for 10-
component mixtures. In Part II the results for the olefins and the alkylbenzene
series will be presented, together with results at pressures other than atmospheric
for the three homologous series. Also, the results are compared with experimental
values for multicomponent systems whose VLE data are available.

INTRODUCTION

The bubble point (z5) of a multicomponent ideal mixture under a given
pressure (P) is conventionally calculated by assuming a reasonable initial
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value of temperature. The corresponding total pressure is calculated. The

calculated pressure should be equal to the system pressure P, if the

assumed temperature is correct. Otherwise, another temperature is as-

sumed and the calculations are repeated until both pressures converge.
Therefore, at the bubble point:

2, pi= P M

where p; is the partial pressure of Component i
n is the number of components in the mixture

According to Raoult’s law for an ideal mixture:
pi=xP’=ypP (2)
or

n

2 x(PIPy= Y yi=1 (3)
=1

i=1

where x; is the mole fraction of Component i in the liquid phase
P? is the vapor pressure of pure Component i at the temperature
under consideration
Y is the mole fraction of Component i in the vapor phase

Similarly, at the dew point:

n

2 yPIPYy= Y x;=1 4)

i=1 i=1

The vapor pressure of a pure component at any temperature ¢ is obtained
from the Antoine equation:

InP’=A4 - B/(t + C) (5)
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where P? is the vapor pressure, mmHg
t is the temperature, °C
A, B, C are Antoine’s constants

Said and Al-Haddad (/) utilized the curve-fitting techniques (2) to fit
the bubble and dew point curves for binary ideal mixtures. The bubble
point curve for the system benzene-toluene was fitted at atmospheric
pressure quite accurately by the inverse linear function. The relative error
was reported to be about 3.8%. The dew point curve for the same system
was best fitted by the logarithmic function which yielded a relative error of
7.7%. The curve-fitting techniques were found to be applicable to other
hydrocarbons, particularly to the paraffinic series.

Said and coworkers (3) derived an equation for direct evaluation of
bubble points of multicomponent ideal mixtures, given the mole fraction,
boiling point, and Antoine constants for each component in the mixture.
They derived an equation which predicts the value of the bubble tempera-
ture increment Az For mixtures containing up to 10 components, the
maximum error in the calculated Arg; was less than 2%.

In the present work, statistical moments are used to develop formulas
for the calculation of bubble and dew points of ideal multicomponent
mixtures. The developed method eliminates the iteration procedure used
in the conventional trial-and-error method. Only the normal boiling
points and the mole fractions of the individual components in the mixture
are needed for the calculation, eliminating the need for Antoine con-
stants.

THE STATISTICAL APPROACH

The bubble point 1, is less than the average boiling point, 7., of the mix-
ture by a temperature increment, At:

tB = tav - AtB (6)

Similarly, the dew point ¢, is greater than the average boiling point by a
temperature increment, Az

tD = tav + AtD (7)
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Statistical moments were used to develop the formulas for Ar; and Aty
The following general formula was utilized to calculate the statistical
moments:

n

be= 2 it = Y (8)
Thus,
First moment: p, = Zx,-t,,,- 9)
i=1
Second moment: y, = Z xi(ty — w,)? (10)
i=1
Third moment: y; = Z xty — u,)? (1D
Fourth moment: p, = Y x,(t, — p,)* (12)

i=

The first moment p, is often referred to as the average or the central ten-
dency. This term is used to donate the point about which the data tend to
collect. In this case the first moment represents the average boiling point
of the mixture.

The second moment y,, or the variance, is a fundamental measure of
dispersion. It provides a systematic summary of the individual differences
and has convenient mathematical properties. However, it is not a con-
venient practical measure as its units are the square of the units of the
variate. Furthermore, many numerical characteristics of distribution are
expressed directly in terms of the square root of the variance (4). It is
therefore preferable to use the square root of the variance or the standard
deviation o to express the dispersion. Standard deviation conveys the
same information as the respective variance but in more convenient units
(5). Here, it can be interpreted as the measure of dispersion of the different
boiling points of the components relative to their average boiling point.

Three important indices are calculated from the first four moments:

Standard deviation: 6 = +1/y, (13)

Skewness: S = p,/ud? (14)
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Excess: E = p,/p3 — 3 (15)

The skewness, S, is a measure of the asymmetry of the distribution. A
symmetrical distribution has a zero skewness, whereas a skewed curve has
an unsymmetrical hill shape, with the high part of the curve correspond-
ing to the greatest frequency near one end, rather than being in the mid-
dle. Skewed curves take two forms; negatively skewed distribution, which
has the longer tail pointing left, and positively skewed distribution, with
the longer tail pointing right.

The excess, E, is a measure of the peakness of the distribution relative to
the normal distribution. If E is positive, the distribution is more peaked
than the corresponding normal distribution and vice versa (6).

APPLICATION OF THE STATISTICAL METHOD TO BUBBLE AND
DEW POINTS CALCULATIONS FOR THE NORMAL PARAFFINIC
SERIES

Starting with mixtures of paraffin hydrocarbons at atmospheric pres-
sure, the conventional trial-and-error procedure was used to calculate the
bubble points according to Raoult’s law for ideal mixtures.

Successive components between n-CiH,, and »-C,;H,, were used in
these calculations. A list of paraffin hydrocarbons between n-C,H,, and n-
CyxHs,, and their normal boiling points within +0.1°C, is given in Table 1.
The calculations were performed on mixtures of 2, 3, 4, 5, and 10 com-

TABLE 1
Normal Boiling Points for Membranes of the Paraffinic Series
Compound 1y, (°C) Compound ty, (°C)
n-CeH 4 68.8 n-Cy7Hg 302.0
n-C7H,(, 98.4 n-C|8H38 3163
n-Cngs 125.6 n-C|9H40 3299
n-C9H20 150.8 n-C20H42 3438
n'CloHZZ 174.1 M'C2l}i44 356.5
n-C11H24 1959 n-C22H46 368.6
n-CiaHg 216.3 n-Cy3Hg 380.1
n-C13H28 2354 n-C24H50 391.3
n-C14H30 2535 n-C25H52 4019
H'C|5H32 270.7 n-C26H54 412.2

n-C 16H34 286.9
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TABLE 2
Components and Composition Profiles Tested for the Paraffinic Mixtures

Composition profiles, mole fractions

Mixtures Components | 11 M1 v
Binary Cy 0.90 0.50 0.30 0.10
Cu+i 0.10 0.50 0.70 0.90
Tertiary Cy 0.60 0.333 0.20 0.10
Cu+1 030 0333 0.60 0.30
Crsa 0.10 0.333 0.20 0.60
Quaternary Cy 040 0.25 0.15 0.10
Cr+1 0.30 025 035 0.20
Crs2 0.20 0.25 035 0.30
Cn+3 0.10 0.25 0.15 0.40
S-Component Cy 0.30 0.20 0.10 0.10
Cr+1 0.25 0.20 0.20 0.15
Cys2 0.20 0.20 0.40 0.20
Cn+3 0.15 0.20 0.20 0.25
Cnyta 0.10 0.20 0.10 0.30
10-Component Cy 0.19 0.10 0.01 0.01
Cy+i1 0.17 0.10 0.03 0.03
Cuy2 0.15 0.10 0.10 0.05
Cx+3 0.13 0.10 0.16 0.07
Crnisg 0.11 0.10 0.20 0.09
Chts 0.09 0.10 0.20 0.11
Cr+é 0.07 0.10 0.16 0.13
Cys7 0.05 0.10 0.10 0.15
Cr+sg 0.03 0.10 0.03 0.17
Cnso 0.01 0.10 0.01 0.19

9N takes all values from 6 to 17.

ponents, at four different compositions for each of the above five mixtures
as shown in Table 2.

The results show that Az is a function of z,,, boiling point span t, and
asymmetry of boiling points around t,. The effect of each of these
variables is described below.

A. Effect of Average Boiling Point (1,,)

In order to find the effect of £,,, two mixtures having approximately the
same boiling point span t, of the same asymmetry, i.e., having the same
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TABLE 3
Effect of the Average Boiling Point of the Mixture (z,,) on the Bubble Point
Temperature Increment (Azg)

Components of the oy Atg T (Atg)corr
binary mixtures (o) 4] °C) (°C) K
C, Cg (1) 112.01 2447 272 2447

3523
Cis. Cx (2) 330.11 1.702 275 1.665
Ce C; (1) 83.54 3.076 29.6 3.076

4489
Ci6 C13 2 301.69 2153 294 2182
C., Co (1) 124.62 8.519 524 8.519

3834
Ci3, Cis () 261.21 6.485 515 6.714
Ce, Cg (1) 97.18 10.494 56.8 10.494

400.7
Ci, Ca (@) 224.87 8.589 576 8352
Cy, Cio (1) 136.32 16.601 75.7 16.601

440.8
Ci Ci5 (@) 233.38 13.875 74.8 14.211
Cg, Ci (1) 160.87 13.890 703 13.890

416.1
Ci Cis @) 251.63 12.105 706 12.001

%(Atg)orr indicates the corrected Asg relative to t of the first mixture.
K = (Atgaytavty = (Atp)eortav))/ (At corr = Alpy)).

concentration profile, but with different ¢,,, are compared. Therefore,
binary mixtures of composition profile II (uniform component concen-
trations) are considered as shown in Table 3. Analysis of this table in-
dicates that as ¢,, increases, Aty decreases:

Aty < 1/(t,, + K)

It was found that K = 400, so that

Atg o 1/(1,, + 400) (16)
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B. Effect of the Boiling Point Span ¢

To find the effect of the boiling point span, binary mixtures having
similar average boiling points, of the same asymmetry, i.e., having the
same concentration profile, but differing in the temperature span, are
compared as shown in Table 4. The results displayed in this table indicate

TABLE 4
Effect of the Boiling Point Span () on the Bubble Point Temperature Increment (Arg)

Components of the ¢, Atg T (Ag)cor”
binary mixtures °O) °O) °C) °O) zb
C., Cg (1) 112.02 2447 272 2.447

1.90
Ce, Cy (2) 109.78 20.031 82.0 19.94
Cy, Co (1) 124.62 8519 52.4 8.519}

1.81
Ce, C1o (2) 12148 30.289 105.3 30.11
Cs Co (1) 13827 1.983 252 1.983

193
C.Cpp(2) 136.32 16.601 75.7 16.54
Cy, Cig (1) 162.57 1.633 233 1.633

1.94
Cs. C11 (2) 160.87 13.890 70.3 13.85
Cy, Ci (1) 173.48 5.845 45.1 5.845 }

1.87
Cs. C1 (D) 171.07 21.732 90.7 21.64
Cip Cii (1) 185.18 1.363 218 1.363

1.95
Cq, C2(2) 183.68 11.731 65.5 11.69
Ci. Cia () 206.28 1.151 204 1.151

1.96
Cip. C13(2) 204.95 9.996 61.3 9.97
Cin Ciz (1) 226.06 0.982 19.1 0.982 }

1.96
CiinCiu () 224.87 8.589 576 0.846

%(Atg)eor indicates the corrected Atp relative to ¢, of the first mixture.
"Z = (11’1 AtB(Z))corr - In Ath)/(ln T~ In t(l))'
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that Az, is approximately proportional to the square of the boiling point
span of the components in the mixture. This leads to the conclusion that
Aty is proportional to the variance which is the second moment (as was
previously defined in Eq. 10).

Aty < 2
where Z = 2, so that

Atg o ©? an
ie.,

Aty <y, (18)

C. Effect of the Asymmetry

For a mixture having 90% C, and 10% C,, the average boiling pointz,, =
71.66°C and Aty = 0.939°C, while for a mixture of 10% C;and 90% C,,¢,, =
95.41°C and Aty = 1.345°C. At, for the second mixture is approximately
one and a half times Az, for the first one, although both mixtures have the
same temperature span and consequently the same second moment. Also,
the effect of the average boiling points of the two mixtures should have
been to decrease Aty for the first mixture below At for the second mixture
by a factor of about 5% according to Part A in our analysis. Instead, there
was an increase by a factor of 50%. Thus, it was deduced that the only ex-
planation would be due to some parameter which varies drastically for the
two mixtures. The only such parameter is the third moment, which is a
measure of the asymmetry. It is a large positive quantity for one mixture
and a large negative quantity for the other mixture. These two quantities
have the same numerical values. The variation of At; with the third mo-
ment was found empirically after several trials.

On the basis of the above analysis, the following formula was deduced
in terms of the first three moments:

Aty = B exp (—BS/1.80) (19)
where

B = 6.8u,/(n, + 400) (20)
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Equation (19) gave satisfactory results for mixtures containing up to four
components. In order to extend its application to mixtures containing up
to 10 components, it was found necessary to multiply the right-hand side
by a correction factor incorporating the fourth moment in the form of the
excess (E) as shown in the following equation:

Atz = a,B exp (—BS/1.80) 21)
where
a, =1+ 0.002BE

In the case of the dew point calculations, the following equation was
found to give reasonably accurate results:

Aty = D exp (DS/1.50) (22)
where D = 7.8u,/(4, + 400) (23)

Equation (22) is modified by multiplying the right-hand side by an em-
pirical correction factor incorporating the excess (E):

Aty = a,D exp (DS/1.56) (24)
where

a, = 1 + 0.004(DE + 0.00055?)

RESULTS AND DISCUSSION

A large number of computer runs were performed to evaluate the
developed algorithm using the statistical approach. The computed bubble
and dew points for the different paraffinic mixtures using the statistical
approach were compared to the corresponding values calculated by the
conventional iterative algorithm. The results are shown in Tables 5-9 for
binary, tertiary, quaternary, 5S-components, and 10-components paraffin-
ic mixtures, respectively. Each table displays the components comprising
the mixture; the four composition profiles; the average boiling tempera-
ture, t,,; the bubble and dew points computed using both statistical and
conventional methods; and the relative errors. The temperature in-
crements Az; and At are also shown for convenience.
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As can be seen from Tables 5-9, the maximum relative error was consis-
tently obtained, within each group, for mixtures containing the lighter
components hexane and heptane. For instance, the maximum difference
recorded in bubble point calculations ranges between 0.02°C (0.028% rela-
tive error) for binary mixtures and 0.60°C (0.453%) for 10-component mix-
tures. The corresponding differences recorded in dew point calculations
were 0.06°C (0.067%) and 3.21°C (1.745%) for binary and 10-component
mixtures, respectively. Since the denominator, in the formula defining the
relative error, increases as the number of carbon atoms increases, the
maximum relative error decreases considerably for both bubble and dew
point calculations. For instance, for mixtures containing n-C,, and above,
the maximum differences recorded in bubble point calculations were be-
tween 0.01°C (0.004%) for binary mixtures and 0.224°C (0.067%) for 10-
component mixtures. The corresponding differences for ¢, were 0.03°C
(0.01%) and 0.85°C (0.243%) for binary and 10-component mixtures,
respectively.

The results from all computer runs were averaged within each group for
ease of comparison. The number of tested mixtures was 48 for each of the
binary, tertiary, and 10-components systems, and 44 for each of the
quaternary and 5-components systems. Average values of the temperature
differences, relative errors, and computer CPU time consumption were
calculated and plotted as shown in Figs. 1-3, respectively.
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FIG. 1. Average temperature difference as a function of the number of components.
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For the 5 multicomponent groups investigated, the average temperature
differences for the bubble point range between 0.012 and 0.192°C, result-
ing in an average relative error range of 0.008-0.091%. The corresponding
ranges for the dew points were 0.013-0.672°C for the average temperature
differences and 0.009-0.255% for the average relative errors.

Figure 3 clearly shows that up to 5 components, there is practically no
difference in the average computer CPU time consumed in calculating the
bubble and dew points. The difference increases, as expected, with an in-
crease in the number of components. Using a UNISYS model 1172 main-
frame, about 60% of the computer CPU time can be saved by using the
statistical approach. This saving decreases as the number of components
in the mixture decreases. Thus, for a binary mixture, the saving in CPU
time was about 48%.

In conclusion, the results obtained by using Egs. (21) and (24) indicate
that the calculated bubble and dew points using the statistical approach
proved to be quite accurate and more economic to simulate. In Part Il of
this work, the results for the olefins and the alkylbenzene series will be
presented, together with results at pressures other than atmospheric for
the three homologous series. Also, the calculated results are compared
with experimental values for multicomponent systems whose VLE data
are available.
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